1.高精度加法
输入两个整数a和b,输出这两个整数的和。a和b都不超过100位
算法描述
由于a和b都比较大,所以不能直接使用语言中的标准数据类型来存储。对于这种问题,一般使用数组来处理。
定义一个数组A,A[0]用于存储a的个位,A[1]用于存储a的十位,依此类推。同样可以用一个数组B来存储b。
计算c = a + b的时候,首先将A[0]与B[0]相加,如果有进位产生,则把进位(即和的十位数)存入r,把和的个位数存入C[0],即C[0]等于(A[0]+B[0])%10。然后计算A[1]与B[1]相加,这时还应将低位进上来的值r也加起来,即C[1]应该是A[1]、B[1]和r三个数的和.如果又有进位产生,则仍可将新的进位存入到r中,和的个位存到C[1]中。依此类推,即可求出C的所有位。
最后将C输出即可。
输入格式:
输入包括两行,第一行为一个非负整数a,第二行为一个非负整数b。两个整数都不超过100位,两数的最高位都不是0。
输出格式:
输出一行,表示a + b的值。
样例输入:
1 | 20100122201001221234567890 |
样例输出:
1 | 20100122203011233454668012 |
代码:
1 | #include <stdio.h> |
2.回文数(该题将回文数与高精度加法相结合)
若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。
例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数。
又如:对于10进制数87:
STEP1:87+78 = 165
STEP2:165+561 = 726
STEP3:726+627 = 1353
STEP4:1353+3531 = 4884
在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。
写一个程序,给定一个N(2< =N< =10或N=16)进制数M(其中16进制数字为0-9与A-F),求最少经过几步可以得到回文数。
如果在30步以内(包含30步)不可能得到回文数,则输出“Impossible!”
输入格式:
两行,N与M 100位,两数的最高位都不是0。
输出格式:
如果能在30步以内得到回文数,输出“STEP=xx”(不含引号),其中xx是步数;否则输出一行”Impossible!”(不含引号)
样例输入:
1 | 9 |
样例输出:
1 | STEP=6 |
代码:
1 | #include <stdio.h> |